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INTRODUCTION 

This is the third quarterly progress report prepared, for the 

National Aeronautics and Space Administration under Contract No, 

NASw-986, The body of this report is qualitative in nature. 

Preliminary versions o f  detailed technical reports are given as 

appendices. The final report will contain a complete and 

detailed description and summary of the work carried on under the 

contract e 

The, objective o f  the research being carried out is the 

development of methods by means of which bounded phase-coordinate 

controllers for large flexible launch boosters can be realized 

The areas f o r  investigation are the determination of the zero 

c o s t  sets, the determination o f  extrema1 controls, and compu- 

tational procedures for finding optimal controls, 

SUMMARY OF ACCOMPLISHMENTS 

The main effort during the third quarter was applied to the 

implementation of Neustadt Is algorithm on an analog computer for 

the solution of the bounded phase-coordinate problem. It was 

found that the algorithm could be set up on the analog f o r  th'e 

time-optimal problem, This is reported in Appendix A, However, 

because the constrained subarcs are singular, the method failed when 

the phase constraints are added. The details are supplied in 

Appendix B ,  
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The s t a t e  o f  work on the genera l  problem 1s outl ined i n  

Appendix C with suggestions fo r  work f o r  the next quar te r .  The 

ana lys i s  of Appendix A from the Second Quarter ly  Report has been 

revised and i s  submitted a s  Appendix D.  T h i s  work was presented 

i n  a seminar a t  t he  National Aeronautics and Space Administration 

Marshall Space F l igh t  Center, February 2-4. 

"Progress Report No, 7 on Studies i n  t h e  F ie lds  of Space F l igh t  

It w i l l  appear i n  

and Guidance Theory" issued by t h e  Astradynamics and Guidance 

Theory Division a t  Marshall. 
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FECHANIZATXON OF NEUSTADl?*S ALGORITHM 
FOR TIME-OPTIMAL CONTROL ON AN ANALOG COMPUTER 

by 

D, D, Fairchild 

'i'he technique whlch i s  descr ibed  zlbow:: "On line" simulation of. the 

time-optimal regulator 'by adapting Neustadtls algorithm t o  analog 

computation, The procedure is an out-growth of attempts to 

realize bounded-phase coordinate controllers, 

THE PROBLEM 
th Given the equations of the system in the form of an n 

order vector differential equation 

= A(t)x + B(t)u(t) (1 1 
we must find a control vector u*(t), of r components, which steers 

Lhc uystcm froin an initial s t a t e  xg at t = 0, to a f i n a l  position 

i n  which a l l  components of x m e  ze ro ,  with the f i n i t e  time of 

tilansit 'L' being a minimum. The additional przoviao t ha t  

lu !t)\ < - 1; ~=1,2,~.,m 
~~n ia i ;  be added t o  set the problem, 

NEUSTADT E'S STRATEGY 

The variation of parameters formula gives 
L 

x(t) = X(t)xo + X(t) X-'(s)B(s)u(s)ds Lb 
as a representation of the solution of equation (1). The matrix 

X(t) is the matrix solution of the homogeneous part of (1) which 

becomes the identity matrix for t=O, If x(to) - 0, multiplying 

1 .  I. 



. 
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equation (1) by X"(t0) yield8 the formula 

-x 0 = +J to X-l(S)B(8)u(s)ds. (3) 
0 

This may be interpreted as producing the s e t  o f  initial conditions 

from which t he  GrXgln can be reached in to seconds by appli- xo 
cation of control. f'uncf,%.on u, 

w . l , t n  a vector ' Q a  yet to be determrned, we have 

Tak%ng the dot product of ( 3 )  

tne  expression giver) .in ( 4 )  is made maximum for all q e  m e  time 

optimal reg1J;llator f o r  normal. systems is assured (Ref 3 )  for a 
r 

1 

c 

I 

St Xs necessary to define the Followf.ng: 1 
p a r t i c u l a r  ,value q = q,. To obtain Neustzdtts relationship, 

1 Makfr*g w3e of 
i 
I 

-rll O x 0 = q  

Expression (7) may 

equation (4) may be written 

Z ( t , q ) ,  when t too 

be written as 

L/ I 1 
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Equation (8) I s  satisfied by the 7 corresponding to +;he time 

optimal r egu la to r  for the  i n i t i a l  condi t ion  xoe 

sidered the function 

Neuat-adt con- 

f ' ( t y ~ ; x o )  = p * [ Z ( t , Q )  .+ x 1 and proved the folIo!nli.:ng pro- ( 9 )  0 .7 

p e r t i e s  

a >  r(t,q,;x.,> .is cof i t~nuous  i .m  t and q , ,  and 

t o  be zero has been illustrated, It  CBF be f u r t h e r  observed t h a t  

ss In i tLaUy 
sg 
The discussion which follows assumes t h a t  f ( t , q ; x  

negative, which is equivalent t o  saying that the afigle between 
and i s  g rea t e r  than 900, xo 
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, ’  

the  pro jec t ion  of [Za(t ,q)+ x,l on q, w i l l  be negative f o r  t < ta, 

and w i l l  become pos i t ive  f o r  t > ta f o r  a f ixed xo. 

The second condition ( i . e . ,  reducing [Z(t,q)+xo] t o  zero)  i s  

only possible  when t = to. 

coincident wi th  negative xoy which f i x e s  the corresponding yo, 

In  addi t ion,  Z ( t o y ~ ) ; x o )  must be 

The vector  [2( t ,q)+xol  w i l l  be nonzero f o r  a l l  t # toy 

and the pro jec t ion  of 71 w i l l  be outward o r  pos i t i ve  f o r  a l l  t > to. 

Therefore t = to i s  the upper bound of the zero crossings of 

f ( t ; q 9 x o )  considered as a function of t .  

i s  the upper bound of u) where o = (T I f(T;q;xo) = O), and f u r t h e r  

I n  o ther  words, t = to 

to E o o  

Plots  of f ( t , q ;xo )  versus t i m e  f o r  several  values of q ,  

as obtained from the preceeding graphical  argument, are given i n  

Fig.  2. 

IMPLEKiNTAT I O N  

U t i l i z i n g  a c i r c u i t  which permits maximizing TEO, the 

optimal con t ro l l e r  corresponding t o  a given i n i t i a l  condition 

can be obtained. 

The Bang-Bang o r  Coulomb F r i c t i o n  Ci rcu i t  d r iven  by 

f(t,q;xo) can provide an  output of the form 

f o r  f ( t , q ; x o )  < 0 ,  

= 0 ,  f o r  f ( t , q ;xo )  > 0 .  
eo(BB) 

rli 
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By dr iv ing  an in t eg ra to r  wi th  t he  output of the Bang-Bang c i r c u i t ,  

the  output voltage of the in t eg ra to r  w i l l  be of the form 

= 0 + kT, f o r  t > T; 

where T i s  a p a r t i c u l a r  t i m e  such t h a t  f(T,Q;xo) = 0 ,  For a 

given i n f t i a l  condition xo and a t r i a l  value Q, (II) i s  only 

a funct ion of ti:.ie, By changing Q and repeat ing the s c l u t i o n ,  

i t  is: possible  t o  obta in  a s e t  of curves U(t,q;xo) which are a 

funct ion of the  time a t  which f ( t , q ; x 0 )  i s  zero. 

set  of curves U(T,T];;io) is shown .in ?dig. 3 .  

with the computer, the form of (9) wi:8 rmdified t o  

A graph of the 

To generate U(T,ll ;x ) 0 

F\t,q;xo) = q ( t )  a x ( t ) ,  02) 

which is  shown equivalent t o  Neustadtb expression by the  following 

argument 

If q!t) = [XT(t)]-’q0, then 

7 : t )  e x ( t )  = [XT(t)]-l? 0 [X(t)xo + X - 1 ( s ) 1 3 ( s ) ~ ~ a ) d s ]  (13) 

LaSalle ( R e f  3) proves the optimzl s t e e r i n g  funct ion t o  be  of the 

f orm 

c t s c t ,  u ( s )  = sgn[q ( t )  * x ( ~ ) x - ’ ( s ) B ( ~ ) I ,  - -I 

I 
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which is equivalent to 

I 

but 

mt j X- 1 (s)B(s) sgn[?, X-'(s)B(s)]ds = Z(t,9;xo). 
" 0  

Therefore (15) can be expressed as 

q(t) x(t) = q0 * [xo + Z(t,T);x,)], which - 
demonstrates that f(t,Q;xo) = f(t,q;x0)* 

Advantage was taken of the repetitive solution capabilities 

of the REAC-C400 analog computer, In this mode the circuitry 

functions such that during one half of a square wave cycle the 

integrator capacitor terminals are "shorted" t o  discharge the 

capacitor, and during the other half cycle the integrator ! s  

placed in "Operate", Thus the computer re-solves the program 

at a frequency determined by an external square wave generator. 

The repetitive solutions are then displayed on an oscilloscope, 

such as the Electromec large-screen oscilloscope. 

the initial values of ? j (o ) ;  j=0,1,2,10.m, a continuous display 

simi$ar t o  that of Fig. 3 is available, The effect of each new 

setting of the elements of '1 is immediately apparent and maximization 

of u(T) is facilitated with a minimum of interpretation required. 

By varying 
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APPLICATION 

The intended appl ica t ion  of Neustadt p s  algorithm was i n  

conjunction with the "sof t  bounded'' phase coordinate problem, 

more properly termed "the approximate l i n e a r  t i m e  optimal cont ro l  

process with bounded phase coordinates ,  ' I  The pro'blem statemen+, 

given i n  (1) is s t i l l  applicable with the add i t iona l  requirement 

that  x ( t ) ,  

i t s  response, 

= 1 , 2 , . . . m  remain within a given cons t r a in t  during 
j j 

The equat1,ons defining the spec. l f ic  case s tudied (ice,, an 

augmented harmonic osc j  I l a t o r )  are 

k 0 = F(x2) 
* x1 = x2 

rlo = 0 

where F(x2) = &(x2 - $ ) 2  Y i f  x2 - > 3 

if /x21 < $- 
0 

= o  

if x2 < 3 .  =$ ( X2+-i) 1 2  - 
> 



I 
The parameters subscripted with a zero result from augmenting the 

system t o  permit enforcing the "sof t  boundary" (Ref 2 ) .  The 

augmented system was believed t o  be normal ( R e f  2 ) ,  however th i s  

assumption l a t e r  proved t o  be inva l id .  The systems non-normality 

was i n i t i a l l y  indicated by the potentiometer s e t t i n g s  required 

t o  maximize the algorithm (S,e,, '1, had t o  be z e r o  which 

corresponds t o  the unbounded c a s e ) ,  The l e v e l  of confidence i n  

these f i r s t  ind ica t ions  was improved when attempts t o  determine 

the required i n i t i a l  values of the elements of T) using g r i d  networks 

were a l s o  unsuccessful.  Increments of - over a range from 1 t o  10 

were used i n  the g r i d  networks search. The phase coordinates of 

s,,ie s ta te  vectors  were plot ted for each t r i a l  i n  the g r i d  network. 

No t r i a l  combination within t h e  g r i d  network resu l ted  i n  switching 

or tracking along the boundary. Further  refinement of the g r i d s  

was not  considered worthwhile. These simulating r e s u l t s  warranted 

100 

f u r t h e r  ana ly t i c  s tud ies  which proved that  the coordinate q ( t )  

vanhhed f o r  a f i n i t e  time while t racking  along the boundary,, 

leaving the con t ro l l e r  undefined and non-extremal, Having 

established that the cont ro l le r  i s  undefined over a por t ion  of the 

switching boundary inva l ida tes  the mechanization scheme being used. 

It is i n t e r e s t i n g  t o  note t h a t  the technique I! recognized'' t h i s  

condi t ion by only providing data  f o r  the unbounded case.  Recall  

t haenorma l  systems a re  required t o  have no component of 

[s X' ' ( t )B( t ) ]  vanish on any i n t e r v a l ,  with 11 # 0 (Ref 3 ) .  
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A de t a i l ed  treatment of the so f t  bounded problem w i l l  be 

l e f t  t o  those more qua l i f i ed ,  since the  a p p l i c a b i l i t y  of t h e ’  

technique under disqussion I s  void f o r  non-normal systems ( R e f  1 ) ”  

I n  implementing the system of (10) it  was observed that  the 

so lu t ion  obtained wi th  qo = 0 was the co r rec t  so lu t ion  t o  the 

unbounded problem, T h i s  r e s u l t  was an t ic ipa ted  s ince the 

systems equations reduce t o  the unbounded case i n  t h a t  configurat ion.  

Several  i n i t i a l  conditions of the state var iab les  were inves t iga ted ,  

and the required i n i t i a l  conditions of the ad jo in t  vectors  were 

obtained,  It should be observed a t  t h i s  point  t ha t  the select-i‘on 

of  i n i t i a l  conditions of the s ta te  vectors  was conditioned by 

dhe pal- t icular  system of equations,  arid a d e s i i a e  t o  compare the  

:c:.ai;c ~ ~ L a i n e d  with those obtained by dusse l l  ( R e f  4 )  foi’ chc 

i 

I ’  

1 < - xl(0) - < 2 ,  and 

x2(0) = 0, 

it is  hoped t h n t  addi t iona l  1-esults w i t h  xI(,O) ‘. 2 arid 

x2(0) # 0 can be invest igated subsequent t o  t he  wr i t ing  of t h i s  

inenio * 

‘ihe anal02 computer pr>ogram used t o  simulate the se t  of 

equations of (10) and implement Neustadt a lgori thm i s  shown i n  

F i g .  4 ,  Two examples of the  phase plane p l o t s  are given i n  F ig ,  50 

For the examples of Fig., 5, the t i m e  va r i a t ions  of individual  
_- 

parameters are shown i n  F i g .  6,  
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CONCLUSIONS 

The conclusions reached i n  t h i s  study are as fol lows:  

1) the technique is not  appl icable  t o  the bounded phase 

coordinate problem as tha t  problem i s  present ly  s ta ted,  

"on l i n e "  appl icat ions do e x i s t  f o r  the unbounded phase 

coordinate problem, and 

2)  

3) where appl ica t ions  e x i s t ,  complete mechanization of t he  

search procedure ( i o e e ,  removing the operator  from 

the loop)  should be considered, Open loop  v e r s u s  c losed 

loop automation also has i n t e r e s t i n g  implicat ions.  

The r e s u l t s  demonstrated t h a t  on l i n e  t i m e  optimal control  

could be obtained for possibly higher than second order  systems when 

the p l an t  dynamics are slow, a s  i n  chemical r eac to r  control  problems 

1rher.e one 01' ti10 rnlnutes can be spent i n  obtaining a f e a s i b l e  

so lu t ion ,  Also,  i n  such appl icat ions a d i g i t a l  computer (of  

perhaps the Honeywell 200 class) could be programmed t o  seek the 

rn3-nimum, and thereby completely mechanize the search procedure, 

Further ,  the method as  it stands could be used t o  obta in  

f e a s i b l e  so lu t ions  as needed i n  t r a i n i n g  the feedback c o n t r o l l e r  

of the  log ic  ne t  mechanization [Ref 5 J ,  or o the r  such appl ica t ions .  

. 
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A NA L.0 G C OM P U'PAT' I ON OF T I M1.: 0 PTI. MAL C O N "  OL 

FOH A FPHOXTMATE BOUNDED PHASE-COOHDINATE SYSTEM 

The synthesis  method f o r  approximate bounded phase-coordinate 

time optimal cont ro l  [Reference 13 was s tudied on an  analog 

computer, The r e s u l t s  indicated t h a t  t h e  method cannot be 

d i r e c t l y  impl.emented I Hecommendations a r c  made f o r  f u r t h e r  

study i n  connection with t h e  s ingular  a r c ,  
I i\..l-,.H-(jD.ui; .ill wq 

A s  shown i n  Reference 1, t h e  s u b j e c t  problem c:in be :!t;~f, ,,i 

Consider a 1 i n e : i ~  c o n t r o l  urocess  d e s c r i b e d  by t h c  s y ; i  

of' d i f f ' e r cn t i a l  eq.uations 

= A ( t ) x  + B(t)u(t), 
where t h e  coe f f i c i en t  matrices A ( t )  and B ( t )  are composed of 

known continuous funct ions on t h e  time i n t e r v a l  [to,tl]. 

an al3.owable con t ro l l e r  u ( t )  which steer 's  x u ( t )  from xo a t  to 

t o  a prescr ibed compact t a rge t  set  G, w i t h  xt(tL) 5 B and 

t -t a minimum, where 

Find 

1 0  

V [ L )  7-  convex continuous d i f f e ren t  iabPe funct lon such t h a t  

= 0, i f  x remains within a given cons t r a in t  s e t  A; 

f 0,  otherwise.  
N X >  
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To so lve  t h e  problem,  t h e  proposed method f ’ ,  1 3  

considers a n  augrrientcyl ‘!n 1-2 syetem o r  eyu;;trion~‘ 

wi th  x * ( t o )  = 0 ,  x(to) = x and ‘I’(to) < 0. L e t  
0’ 

2 2: a‘x 0 ,A 

Then t h e  system S> could be  s o l v e d  on an  analog computer by 

means o f  modified N e u s t a d t  e s algorithm [Refc rcnct.. 2 3 

EXPERIMENTAL RESULTS 

Two exatriples were s t u d i e d  on t h e  analog computer: 

Pulae inertia system X I .  = u wi th  A = lkl\ 5 0.5 ( a )  



. 

Various initial conditions x(0) and different values of @ were 

considered on the computation, A set of typical phase-coordinate 

trajectories with x(0 )  =[o’’J, 1 B = 0.5, and various trials of 

G ( O >  is shown in Figure 1, 

supposedly corresponds to a time optimal* solution does not 

Note that the trajectory which 

pass through the origin, and the trajectory which ends at the 

origin does not correspond to a time optimal solution, 

there is no indication showing the effectiveness of t h e  phase- 

coordinate constraint, 

Moreover, 

( b )  Harmonlc oscillator system i1 f x1 = u with A = lkl! 5 0.5 
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F(x) and t h e  t a r g e t  a r e  defined i n  the  same forms as  shown 

i n  example ( a ) .  Figure 2 shows a set  of t y p i c a l  phase coordlnate 

t r a j e c t o r i e s  w i t h  B = 0 , 5 .  Note t h a t  f o r  t h e  case of x(0) = r o o 3  9 

t h e  time optimal t r a j e c t o r y  with t h e  bounded phase-coordinate 

cons t r a in t  i s  i d e n t i c a l  t o  t ha t  without t h e  cons t r a in t .  For 

x(0) = Po7], t h e  t r a j e c t o r y  which supposedly corresponds t o  a 

time optimal so lu t ion  does not pass  through t h e  o r i g i n ,  The 

t r a j e c t o r y  which ends a t  the  o r i g i n ,  however, i s  not only non- 

tine optimal ,  but  a l s o  corresponding i o  an  improper s i g n  oi' E ( x ) .  

The l a t t e r  v i o l a t e s  t h e  requirement o f  convexity of  F(x) i n  t h e  

de r iva t ion  o f  t h e  computational metho( . 

EXPLANATION 

The f a c t  t h a t  t h e  computational mctll . ,c,  c:,u.I cc i lo i  b c  -imp.Lcrnented 

d i r e c t l y  can be explained by an ana lys i s  o f  a numerical example. 

(; ) , I  i (  'r the\ pure i n e r t i a  system a s  given i n  t h e  previous 

s e c t i o n ,  Since ~ " ( 0 )  = 

imp l i e s  q1(0) < -1qo(0) 
a negat ive cons tan t ,  

When Ix,[ < 0,5, t h e  function F (x )  = 0 and -+, aF '  x = 0 so - 
t h a t  'p, = -TJ1 > 0 ,  Since u ( t )  = sgn q 2 ( t ) ,  hence q,(O) < 0 



. 

f o r  otherwise the  r e s u l t i n g  u ( 0 )  = +1 would s t e e r  t he  system 

away from the  o r ig in .  Thus 

q2(0) = negative constant and 

fi2(0) = pos i t i ve  constant . 
Since x$t) = -t f o r  u ( t )  = -1, the  t r a j e c t o r y  w i l l  a r r i v e  

T h i s  i s  a t  t he  phase coordinate boundary x2 = -0.5 a t  t = 0.5. 

i l l u s t r a t e d  i n  Figure 3. 

t < 0.5. If it would, then the switch of  the  cont ro l  occurred 

Note t h a t  q 2 ( t )  cannot change sign f o r  

too  e a r l y  so t h a t  the t r a j e c t o r y  would not be able  t o  pass through 

the  o r i g i n  without crossing t h e  o t h e r  boundary x2 = 0.5 and follbwed 

by a t  l e a s t  two more switches o f  coh.'irol. 

L e t  q ( t  ) = 0 a t  some tl > O.-,. Then Q2(t)  i s  a Parabola 
2 .1 

bending downward f o r  0.5 L t L tl s ince  F ( x ( t ) )  = 005rx2( t )+o .51  2 

= 0.5c-t+0.512, 

* f o r  0.5 < t < tl. and q 2 ( t )  = Iq,(O) 1 - o.5(qo(O) 1 *t-t+o.51 - - 
For t = tl + . E ,  where E i s  a small quant i ty ,  q 2 ( t )  > 0 and hence 

- 

and q 2 ( t )  = h , ( O ) I  + 0.5 111 o ( 0)1.[rt + 0.51 - ~t1+o.5 i2-~- t l+o .5 i  2 I 
which ind ica t e s  t h a t  q 2 ( t )  i s  now a parabola bending upwards f o r  

t > tl. Since q , ( t )  cannot change s i g n  t h e r e a f t e r ,  hence the  

t r a j e c t o r y  w i l l  not pass through the  o r i g i n  unless  the  switch 

of t he  cont ro l  occurs on the  switching curve and i n  which case 



. 

t h e  t r a j e c t o r y  w i t h  t h e  bounded phase-coordlnate constraint is 

I d e n t i c a l  to t h a t  wi thou t  the constraint. 

CONCLUSION 

From t h e  above o b s e r v a t i o n .  j t  3.3 conc luded  t h a t  t h e  proposed 

method LRef I ]  cannilt b e  d i r e c t l y  implemented. I t  i s  r e a s m ? j b !  

portion of  q, is t.sngent to t h e  hori izont ;aI  axis (E'iguw 4)  R I X C ~  

RE FE HENCE s 

I. Second QJarterly Progress Reporl; t o  N A S A ,  6 January 1965, 

Rppendi x A 

2, This issue o f  Quar te r ly  Progress Report t o  N A S A ,  Appcncljx A. 
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A SUMMARY OF BOUNDED PHASE-COORDINATE 
CONTROL PROBLEMS WITH INTEGRAL COST 

By E. B. Lee 

I n  sec t ion  4)  of Appendix D a shor t  discussion of  bounded 

phase-coordinate problems i s  given. The motivation f o r  thls 

was the  use of c e r t a i n  suff ic iency conditions and t h e  usual 

method of handling bounded phase-coordinate problems by soft 

cons t r a in t s  introduced through a penalty funct ion,  It was l a t e r  

rea l ized  t h a t  t h e  method used  to handle the bounded phase- 

coordinate time-optimal problem i n  t h a t  appendix was a d i f f e r e n t  

method, involving the use of a t r a n s v e r s a l i t y  condi t ion.  The 

use of  the t r ansve r sa l i t y  condition t o  obta in  a s o f t  cons t ra in t  

appears t o  be a new way of handling t h i s  problem and has not  been 

completely developed and evaluated, It i s  t h e  purpose o f  t h i s  

note t o  ind ica te  t h e  ex ten t  t o  which the theory for t he  i n t e g r a l  

cos t  c r i t e r i o n  can be developed along the l i n e s  o f  the  previous 

theory f o r  time-optimal control  w i t h  t h e  bounded phase-coordinate,  

A s  i n  sec t ion  4 o f  Appendix D,  consider the l i n e a r  cont ro l  

process 

L & = A(t)x + B ( t ) u ,  

of s ec t ion  2 of  Appendix D o  

x ( t o )  = xo, uen, s a t i s f y i n g  conditions 

The cos t  funct ional  o f  control  i s  



c2 

where tl i s  a fixed time >to and the  r e a l  functions f b ( x , t )  and 

h 9 ( x , t )  a r e  continuously d i f f e ren t i ab le  and f o ( x , t )  is a convex 

funct ion of  x f o r  each t .  g I s  assumed t o  be convex in x ,  

The problem of  optimal control  i s  t o  choose an admissible 

con t ro l l e r  u ( t )  on [to,t,] so  t h a t  the response of I moves from 

a t  to t o  a t a r g e t  s e t  GCR" a t  tl, and minimizes C(u) wi th  t h e  
xO 

e n t i r e  response x u ( t )  contained i n  t h e  closed convex r e s t r a i n t  

se t  A .  

As before we introduce t h e  convex d i f f e r e n t i a b l e  funct ion 

F(x) sa t i s fy ing  t h e  conditions: 

P ( x )  > 0 ,  i f  x $!Ah, 

= 0, i f  x E A .  

It i s  a t  t h i s  point  t h a t  we 6epart  from the  previous theory,  

which was t o  add F(x) by means of. 8 LagrangeMultiplier X t o  t h e  

integrand of  t h r  i n t e g r a l  par t  o f  t h e  cost  funct ional  and then  

argue t h a t  if X i s  s u f f i c i e n t l y  l a rge  t h e  bound on t h e  phase 

cons t r a in t  i s  approximately enforced when C(u) i s  minimized. 

Instead we prescr ibe a bound B and requi re  
I 

0 
b 

O f  course, one way o f  handling t h i s  added inequal i ty  i s  t o  use t h e  

method o f  Lagrange mul t ip l ie rs ,  which leads back t o  t h e  o r i g i n a l  

formulation, 

and s u f f i c i e n t  conditicazs, s o  we w i l l  not  r e s o r t  d i r e c t l y  t o  such 

methods. 

We wish t o  prove exis tence,  a s  well a s  give necessary 
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Let A' = F(x>, 

and ;nL1 == t ' O ( x , t )  + ho(u,t)J 

x * ( t o )  -7 0 = x nt- 1 (tolo with 

these two equations obtaining the system 

We augment the system J: by adding 

- go = F(x) 
S 

2 = A(t)x + B ( t ) u  

X On+' = fb(X9t) + h ' ( u , t )  
n+l ry 

with initial data zo = x(t,) = ( x o ( t o ) ,  x(to), x 
n+l 

(to)) -= 
I- 

= ( O ~ X O ' O ) r  x = (x;x, x 0 

The s o f t  bound problem is to find an admissible steering 

function u(t)Cn on [to,t13 steering z(t> from zo to the target 
set G = ~xo,::,x~*'l o I txo I < 8 ,  XEG, o - < x ni-l < -3 with minimum Al 

- 
Define the set o f  attainability K(tl), in variables 

(xo,x,xn+l) to be the collection of  end point z(tl) of responses 

x(t) of  S corresponding to all admissible controllers u(t) on 

[to,tl] with x(to> 3= x 

measurable controller belonging to the compact set h ,  

ru N 

N c1 

An admissible controller u(t> is a 
O 0  

An adjoint response corresponding to an admissible controller 

u(t) on [to,tll is n+2 row vector satisfying the differential 

system 

= constant - < 0 q0 

E constant - < 0, on [to,tl] where x(t> is the response of 
%l+l 

L corresponding to the controller u(t), 
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Define an admissible con t ro l l e r  u ( t )  on [t,,tll t o  be 

extremal i f  the response ?( t )  of  *s" corresponding t o  u ( t )  has an 

end point x(t,) contained i n  the lower boundary ( i n  both xo and 
X ni-1) 

on [to,t,] t o  be a maximal cont ro l le r  i n  case there ex i s t s  a 

nonvanishing ad j o i n t  response G( t )  such t h a t  

cy 

su 
of  K ( t l ) .  Further,  def ine an a d m i s s i b l e  con t ro l l e r  u ( t )  

*u 

d t )  B ( t ) u ( t )  = Max I ;SWB(t )uI ,  
UE Q 

a.e .  on Ct,,tllo 

It has been establ ished that  z(t,) i s  a compact subset o f  
4 

=IEd SO we " r e  =rssv.rad t h a t  optimum ccntrollers exist. A "  T t  

appears t h a t  t h e  lower boundary i n  xQ and x n+l i s  a convex 

surface so  t h a t  the  extremal and maximal c o n t r o l l e r s  a r e  the 

same, giving u s  a wey of  choosing optimim c o n t r o l l e r s .  Further ,  

i t  i s  expected that theorems s imi la r  t o  t h e  remaining theorems 

o f  Appendix D will be obtained. 
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(REVISED) 
AN APPROXIiflATION TO LINEAR BOUNDED 
PHASE COORDINATE CONTROL PROBLEMS* 

, 

E. 8. Lee 

1. Introduction 

of the control variables and various system variables may occur. 
Certair: results [1,2,7] &e available for the determination o f  
optimei controllers for some classes of I’inear and nonlinear 
system involving such restraints. These results take the form 

In many control problems both restraints on the magnitudes . 

of necessary ar sufficient conditions for optimal control but 
not both, and are therefore only a partial solution to even 
t h e  theoretical problem, leaving EQch to be c?esired in the 
.;fa.; of a practical solution. Tc use the r?ecessary o r  s~Cf2- 
cient conditions for synthesizing an optimal controller it 
i A  necessary to solve a two-point boundary value problem In . 
terms of a number of free parameters and multipliers where 
the nunber of parameters i s  not even known a8 well as certain 
jump conditions [2,7]. A backing out procedure [g] 18 also 
available if one is interested In flooding the domain of . 
controllability with responses and then keeping .track (storing) 
of the corresponding control magnitude f o? each such point. 

Qver the above schemes, but I s  only an approximate sOlutIOn. 
Its main advantage I s  that no discontinuities will be encow- 
tered in the adJoint solution which determines the opthum 
controller and therefore the resulting two point boundary, 
value problem may be more readily solved. 
both necessary and sufficient conditions, as well as 8XlStenO8, 

We here offer a procedure which has several advantages . 

.- 

’ The results provide 

*Prepared under contract XASw-986 for the NASA. 
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f o r  t he  approximate problem. 

described by the  d i f f e r e n t i a l  system 
The ana lys i s  i s  l imited t o  l i n e a r  con t ro l  processes as 

.C) 2 = A ( t ) x  + B ( t ) u ( t ) .  

The coe f f i c i en t  matr ices  A ( t )  and B ( t )  a r e  composed of hown 
continuous funct ions on the time i n t e r v a l  [tojtl]. The con- 
t r o l l e r  u ( t )  i s  t o  be chosen from a s e t  
s o  as  t o  s t e e r  t h e  response, x u ( t ) ,  of L) from an i n i t i a l  
point  xo a t  time to t o  a prescribed compaot t a r g e t  s e t  GCRn 

Q :  1u IL 1; j = 1,2,. . .m, 

N 

aiiu 0 - A  it i s  reqLired t h a t  xu(*) reriain within a given constraint 
n oG -4- w ,  A, during i t s  en t i re  r e ~ p ~ r i ~ e  . I I ~ ~ S  IZ” is the il diiiieii- 
s i o n a l  r e a l  number space. 

t he  next sect ion,  i s  t o  f ind a c o n t r o l l e r  u ( t )  which steers 
x u ( t )  from xo t o  OCA i n  mlnimun time, t ha t  i s ,  m l n i ~ ~ l Z e 8  

C ( U )  = tl - to with x ( t l ) e  Q and x,(t) c A, to t 1 tlJ 
Later ,  i n  sec t ion  4, we d i s c u s s  o ther  optimum control  oost  

The problem of time optimal cont ro l ,  a s  considered I n  4- 

N 

N 

func t iona ls .  
There a re  c e r t a i n  d i f f i c u l t i e s  involved when one 

d i r e c t l y  solves f o r  t h i s  optimum c o n t r o l l e r ,  We s h a l l t h e r e -  
f o r e  be content wi th  so lving t h e  following apparent ly  simpler 
problem: Find tha t  cont ro l le r  u ( t )  with graph i n  n which 
s t e e r s  x u ( t )  from xo a t  to t o  G a t  tl with x i ( t l )  L B and 

H 

- to a minimum. x i ( t )  i s  defined below. 
It i s  assumed t h a t  A i s  a closed convex s e t ,  ( f o r  

convenience we could even l e t  A 3: {xlx‘H x - < c ] ,  where H is  
a pos i t ive  semi-definite matrix and c = constant > 0 , )  .Let 
F(x) be a convex continuous d i f f e ren t i ab le  func t ion  which IS 
such that 

F(x) # 0 
= ‘0 

r 
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Then define' 

xi(tl) essentially measures the excursions of the response 
;c,(t) to a controller u(t) outside of the region A during the 
tine interval [to , t,,] . 'By keeping %( tl) small the%esponse 
x,(t) is restricted to stay close to or within A. The above 
mininun time optimal control problem is approximately solved 
by fizding a controller which steers k(t) - (s(t)Xu(t)) *Om 
( 0 , ~ ~ )  t o  G = [xo ,xIx E 5, 0 < xo < S ]  in the-minimum time 
intervzl tl.- to if 8 > 0 is sLfficiently small, 

In the next section we give neceszary and sufficient 
conditions for this approximation problem using the time 
\ ,?tima1 criterion. Section 3 contains an example and section 
4 is a discussion of the approximation problem for other cost 
functionals. 

2 ,  The necessa~ty and puffiolslnt osnditiensl POP the appraxlmate 

We augment the system I: by considering the equation system / 

- - 

linear time optimal  problems 

?There is, of course, some question as to whether such a 
functicln F(x)  exists for an arbitrary convex set A contained. 
in Rn. We now cite an example which shows that there are 
such functions'in a number of interesting cases, Suppose 
A = [xl, x2 ,...xn1 1x21 - < 13. Then pick F(x) 

- 2  ..e - 
= 1/2(x2 - 1)2 if x > 1' 

= 1/2(x2 + 1)2 if x2 - < -1 
= o  if 1x27 - < 1 

Thus if only one coordinate '(or a linear combination) is res- 
tricted the problem is easily handled as in the example, 
where F(x) is continuous and has continuous -partial derivatives. 
Other A's can be approximately handled as in the example, 

I 
I 
1 
I 
! 

c 



0 of t h e  existence theorems of references 

n+l vectors  4 t o  i ( t )  a t  points of  6 ( V )  / A  have t h e i r  A first 

, and 8. 7 The lower surface' of :(t) i s  where ,exter ior  normal 

. 
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i) 2' = Fix )  

2 = A ( t ) X  + B ( t )  u ( t )  

obtained from L) by adding t h e  equation f o r  io with x o ( t o )  = 0. 
Here A ( t ) ,  B ( t )  a r e  bounded and continuous on etoJt 1 and 
F ( x )  is a convex func t ion  with F(x) = 0 f o r  x E A. ' E ( x )  
i s  assumed t o  e x i s t  and be continuous everywhere. 

The s e t  of a t t a i n a b i l i t y  t(t,)C Rn+' i s  t h e  c o l l e c t i o n  
of end p o i n t s  G u ( t l )  of responses g u ( t )  = (xG( t ) ,  x,(t)) of 
? which i n i t i a t e  a t  (O,xo) a t  time to corresponding t o  a l l  
(Lebsegue) measurable cont ro l le rs  u( % )  which a r e  such 
t h a t  l u j ( t ) l  (Such 
c o n t r o l l e r s  a r e  re fer red  to as  admissible c o n t r o l l e r s , )  

1 on [to,tl], f o r  j = 1,2.., ,m. 

I n  the following theorems we e s t a b l i s h  var ious  proper- 
; ies  f o r  R ( t , )  and a?(t,) a s  required i n  synthesizing optimal 
c o n t r o l l e r s .  

Theorem 1 

Then z ( t , )  is a nonempty compact subset of-Rn+' i n  var iab les  

Consider the  above system i) with i n i t i a l  point  
h 

xg' restraint s a t  0, and set o f  attainablllty R ( t , ) ,  

- I. 

(x ' ,x)  with convex lower surface ( a s  defined below) f o r  each 
to tl < cr). 

Proof  I?( tl) i s  nonempty since any measurable con t ro l l e r  
' u ( t ) C  fl gives r i s e  t o  an  end point GU(tl)E I?(tl). i(tl) 

component qo L 0. 
of I?(tl) then the point  i E. A%, + 
0 - < X 5 1, i s  such t h a t  

We now show t h a t  i f  x1 and x2 a r e  
A - (Y'jy)~ ' po in ts  

J 
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. Y = x&) 

and 

.tihere u ( t )  = X u , ( t )  4 (14) u ( t)  and u,( t )  and u,( t )  are 
such t h a t  Gu (t (9'5. The convexity of  the  
lower s u r d  of K ( t l )  then  follows 'because I n  order  f o r  
it t o  be nonconvex it  is necessary t h a t  t he re  e x i s t  two 
poin ts  xl, 
t he  poin t  X x1 f ( 1 - X )  G2 I s  below the s e t  z(tl) f o r  some 
0 < X < 1, .which w i l l  then be Impossible. ' 

With G ( t )  - x u l ( t )  4 (I-x) c2(t) we ricd that 

2 
1 3 

A A 

on t h i s  lower boundary, with the  property that xP 

. 

0 

L 

t* 

0 

= x x (tl) + ( 1 4 )  x (t,) = 
u1 Y? 

= x x1 +. ( L X )  x2 = y 

where g ( t )  is the  fundamental so lu t ion  matrix of G with 
dt,) = I. We a l so  ca l cu la t e  

x:(tl)' = l,' F ( x G ( t ) ) d t  
h 

. . .. .  

w i. 

. , .... 
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and x x i  (t,) + (14) 
i s  a conbex funct ion of 

(t,) f o r  comparison. Since P(x) 
i t  follows t h a t  for  o 5 x < 1, - 

and so 
.L 

A t  -I 

F ( x  ( t ) ) d t  + (1-X)F(x%(t))dt = yo. 
u1 

Q.E.D. 1 

We will now consider those con t ro l l e r s  u ( t )  on [t,,tl] 
which s teer  ?u(t) from Go a t  to La points  2l contained I n  
the  l o w e r  boundary of B(t , )  (wr i t ten  ar2-(tl)) . 
w i l l  be ca l led  extrema1 and they will play a s ign i f i can t  part 

such c o n t r o l l e r s  

i n  t h e  se lec t ion  of  optimal con t ro l l e r s .  
Let u ( t )  E 0 on to t - <tibe an admissible .  c o n t r o l l e r  - 

for t he  convex control  process 

i) 2' = F(x) 

' A = A ( t )  x + B ( t ) u ( t )  

with i n i t i a l  point 2o - ( 0 , ~ ~ )  a t  t'o, 
response G u ( t )  has an end point G( t l )"K-( t l ) ,  then  u ( t )  
i s  ca l l ed  an extrema1 control  and G u ( t )  an extrema1 response 

If the  corresponding 
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.A  

The adjoint response G ( t )  = (qo(t), q ( t ) )  corresponding 
- to a con t ro l l e r  u(t) is a row n+1 vector satisfying t h e  if 

.- . .differential system 

= constant Z 0. q0 

where \(t> is the  response of g) corresponding t o  t he  control ler  
u(t). Define u ( t )  on [to,S1! to be a maximal controller tn 
case there exists a nonvanishing adjoint response q ( t ) *  
r) C 0, so that q(t)B(t)u(t) = M2x {?( t )B( t )u]  8 . 8 .  on [t,,tLl. 

UE:n 

LI 

0 -  

In the fo l lowi ra  theorem 2 it is showii that extrema1 
mc! ~ a x i m l  cor?trol lers  s r e  the  'ssme. 

Theorem 2 Consider the convex control process?'. ' 

* A(t)x .t B(t)u(t) 

0 

with initial point xo = ( 0 , ~ ~ )  at time to. 
c o n t r o l l e r  u(t)C n on Lt,,tlJ is extrema1 for L i f  and only 
if it is a maximal controller, that is, if and only if'there 
is a nonvanishing adjoint response S(t) of 

An admissible 
A 

9 = -rl A & )  - qo ax 
qo = constant < 0 -, 

?The necessary portion of this theorem follows from L. S. 
Pontryaginfs Maximum Principle ( 7 ) .  For completeness the 
slmple arguments to establish the necessary part are 
presented. 



% .. 
D8 

so t h a t  ' I  

- Proofl'Assume 
%(t) from (0 

u(t)cntt,,t13 is extreml  and 10 r t o e r r  

J o  x at to to Gig aR-(tl) at tlo moose i(tl) = 
to be a> nonzero vector normal t o  n direoted i n t o  . 

Then let {(t) with {(tl) as above be the reapme &'the 

'*-' ' ' 

halfspace defined by n which does not meet k(t,). 
To < 0. 

Note 

adjoint equation corresponding to the eontroller u(t) .  . .  
The controller + G(t) = sgn[q(t)B(t)) 4ef-d for 

. -  
. .. 

.-- 

@n Tto,tll: 

L e t  T~ be an Interval of total length e > 0 oontamd 

6 + q(t)B(t)u(t) < Max fq(t)B(t)u) for some 6 R 0. 

L q  8 = [t,,tl] whereon 

. uon 

For given 6 > 0 consider the modified oontroller : 

u,(t) = u(t) on 8 - T~ 1 

I 

. .  
.. .e . .  

1 G(t) on r E J  



/- 

. and 

and 

calculate 

Q (t x A: 
= $ + qx, where r e f e r s  t o  a response of dt 

corresponding to the modlfled controller u,(t) .. . 
Integration from to to tl y i e l d s  

+ r t l  
J 
0 
t 

Combiriing terms and using t h e  assumed continuity’for F and , 

&? ax we eas i ly  find that 

i(tl)G,(t,) - :(tl)ii(tl) - > 6 E + O ( E )  for B sufficiently 
4. 

small where o ( E) ’ corresponds to terms of higher. than first 
order i n  E, and.therefore f o r  E sufficiently small . ,  

t(t)xe(tl) -G(tl)G(tl) > 0, contradicting the construction 
of $(t,) as the  outward narmal t o  g(t,) at GI. 

! 
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Eence there exists 

q(t)B(t)u(t) - Max - u€n 

;i(t) 

a.e. 
with 

Conversely, assume 
+ 0 are such'that 
q(t)B(t)u(t) = -X 

UCQ 

on 9 with T o  ? 0 .  

D l O  

no such interval so 

q(t)B(t)u almost everywhere on 9. 

that u(t) and corresponding response 

Let 6(t) be any controller In 0 
corresponding response xc( t) . , If we calculate 

2nd then integrate from t, to tl using the assumed sonvexity 
of F(x) we find that 

is any point of i(t1)* Since I{<t ) I  + 0, . a where 4 
and qo L 0, the above inequality Implies that xu(tl) is 
contained in the lower boundary o f  the compact set %(t,) 
with convex lower boundary and hence u(t) is extrema1 

' 

- 
0. 

Theorem 2 indicates that to stay at a lower boundary 
point we must continuously steer maximally in the direction 
of the vector G ( t ) .  
Corollary 2.1 
for X, with corresponding response xu(t) and adJoint response 
q(t) so that, 

This remark is summarized as a corollary. 
Let u(t) on [t,,tll be an extrema1 controller 

A 

* 
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8 . e .  on  [t,,t,]. 
u ( t )  i s  z l so  an extrema1 con t ro l l e r  with ~ . . ( T ) E ~ R ( T )  . Then on each subinterval  [t,r]C [.tn,t7], 

I 1  " 
IvIoreover j(z) i s  an e x t e r i o r  normal t o  R(T) a t  x ( T > .  
Proof Replace tl by T i n  the proof of  theorem 2 t o  ob ta in  
t h a t  

for all G(T) i n  2 ( r ) .  
of  t h e  coro l la ry  can be drawn. 

depends continuously on the parameter t,. 

From t h i s  inequal i ty  the conclusion 

We next show t h a t  t h e  set of  a t t a i n a b i l i t y  g( t , )  

s e t  

and 

G2c 

J. 

Define the d is tance  between a poin t  p and a compact 
G7CRn t o  be 

def ine  the 
R" t o  be 

distance between two compact sets  OL, and 

The s e t  I?(t2)C Rn+l  varies continuously with t2 if 
given an E > 0 there  e x i s t s  a 6 > 0 so t ha t  f o r  lt2-tl( < 6, 

i 
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- herma 1 
k ( t , k  Rn' l .  

Consider the  sys ten  2 a s  above wi th  a t ta inable  set  
A 

Then K ( t l )  va r i e s  continuously with tl < 00. 

A 

Proof Iv'e need only show t i a t  each point x(t l )  of *(t,) 
i s  c lose  t o  some poin t  2 ( t 2 )  of  E(t2) and conversely. That  
i s ,  we need show t h a t  given E > 0 there exists a 6 > 0 SO 

. t h a t  when Itl - t,l < 6 there e x i s t s  G ( t l )  E g ( t l )  such 
that  !x(tl) - x(t,) 
ve r se ly .  

G,(t) t he  corresponding response. 
c a l c u l a t e  

< f for each i(t,) d f(t,) and con- 

Let u l ( t )  be 'an  admissible controller on [to,tl+l] and 
For tl -. < ;t2 5 tl +1 

and 

xl(t2) - xl(t l)  = @(t,) L 4(s)'l B(s)u,(s)ds' 
0 

b 

0 7i 

"0 

so 

, 



. -  
C 

and 

0 b 

Since A ( t )  i s  bounded and continuous on [to,tl+l]  SO is 

Q(t) and therefore there ex i s t s  a constant C1 so that 

and 

Also since B{s) has bounded continuous elements b i ( t )  and 3 
u l ( t )  i s  bounded amd measurable there ex i s t s  the constant 

Cg so that 

,J:l @(s)'' B(s)ul(s)dsl  < C2. Integration is  a 
L, 

continu8us operation, therefore, given an B > 0 there e x i s t s  

a 6 > 0 so that'  
L 

"1 
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Hence 

for It, - tll < 6 < 1. 

u(t> steers to ?(tl) and extend it to Cto,tl+ll by letting 
ul(t) = u(t,) for t E [tl,tl+ll.- The above calculation is 
then repeated to find IG(t,) - G(tl)l < e for It,-t,f < 6 < 1 
and so d(tl) varies continuously with tl. 
Theorem 3 Consider the system as above with initial data 
xo = (OJxn), compact restraint s e t  c ,  and set of attainability , 

c(t, ) . where ' 

B > 0 is a constant and 
G meets the interior of c(tl), then there is a 6 > 0 such, that C) 
.ee ts  K(tl) for It - tll < 6. 
Proof Since G meets the interior of ?(t,), there is a point 
6 e ( G 0  Int . i(tl)) and a b a l l  neighborhood N($) of radius 
r > 0 contained in t(t,). 
of Rnsl and in this plane pick n+l independent points 

spaced, 
of 2 vith Initial data Go = (O,xo) and corresponding to 
controllers ul(t), ug(t), 
are such that xl(tl) = xl, ... 
1 > 6 > 0 so small that for btl1 5 6 the points Gl(t) lie 
within spheres of radius r/10 of the points 

The other way we consider u,(t) = u(t) on [to,tlj where 

h 

Let the target set G = {xo,x/ 0 < xo < 8, x E - - 
is a cgmpacf-, set, of R"+ Suppnse 

Consider the hyperplane xo - po=r/2 

A A A 

of the boundary of the ball N(C)', all. equally 
n' xn+l h 

"2.. .x 
Let g1(t), $2(t),...2n(t), xn+l(t) be responses 

A 
1- 

(t), to < t < t, 3.1, which - -  
A A ' ' *UQ+l A (t 1 = xn+1* Pick 'n+l 1 

6 

.Xn+l. This 
being possible because of the previous lemma 1. 
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' I  

Consider the  convex combination of c o n t r o l l e r s  u x (t) ss 
= xl'l(") -k X Z U 2 ( t )  -k. .Ohn+lun+l(t) J hj. > 0, 2 xj. = 1 
(Note luxi! 
of ;. with i n i t i a l  data  ( 0 , ~ ~ ) .  For each f ixed t ,  \t-t,l 5 A 

these  response end poin ts  x..(t) sweep out a surface sec t ion  
S which l i e s  kelow the  plane xo = po by convexity,, above.:.oF 
on the plane x o  = 0 because of the  pos i t i ve  na ture  of 4! and 
i n t e r s e c t  t h e  l i n e  segment {O - < xo -L < PO, x-pl (see proof 
of theorem I). 

';!e now consider the  problem o f  ex is tence  of O p t i m u m  

1) and t h e  corresponding responses <(t) 

N 

Hence G meets i(t) f o r  I t - t l l  7 I, < 1. 

c m t r o l l e r s .  A 

Theorern 4. 
s e t  Q = TU! I U  I I < 1, i=1,2. . . , rn1i~ ' . ' ,  i n i t i a l  point  (0 x )GR 
a t  t i n 2  t 
--:GI for R > 0. If the re  e x i s t s  an admissible c o n t r o l l e r  u ( t ) L  Q 
s t e e r i n g  x 5 t - < tl then  the re  exists an optimum 
c o n t r o l l e r  (also admissible) s teer ing  x t o  G i n  minimum time 

Consider the system s. as above with cormact r e s t r a i n t  
n+l  

and constant com2act t a r g e t  s e t  G = Ixo,xIO L, 90 5 B, 
, o  

i 

- 
A t o  G on t 

.. 

dura'cion t;" - to. 
Proof If' (OJxO)< G then  ts = to and optimum cont ro l  i s  not 
requi red .  
ability e(t,) f o r  tl 2 to. Since the re  is one c o n t r o l l e r  
which s t e e r s  (0,x 0 ) t o  G t he  s e t  z(t 1 ) meets 0 f o r  some 
t 1 > to. Define t* t o  be t h e  g rea t e s t  lower bound of a l l  
t imes tl such t h a t  l?(t,) meets 0 .  By the  sontinuous dependence. 
of  it(t,) on tl the  s e t  of  times f o r  which K ( t l )  meets 0 is ' 

a closed se t  i n  R1. Hence t* i s  the  first time f(tl) meets 
G and therefore  pick a s  t he  optimum c o n t r o l l e r  u*(t) ,  
to 5 t 

So assume (OJxo)$  G and consider t h e  s e t  of attaln- 

t*, a con t ro l l e r  which s t e e r s  t o  

K ( t * ) n  G. i 
! 
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‘;..ne x x t  theorem asserts t h a t  f o r  optimum cont ro l  we need only 
consider  points  of the lower boundary of the set of at tain- 
ability and therefore  by theorem 2 exlremal con t ro l l e r s .  
A suf f ic lency  condi t ion  i s  also included. 
Tneorem 5. Consider the system 2 as above w i t h  compact 
rec tangular  r e s t r a i n t  s e t  n, i n i t i a l  point  (o,x,) a t  to 
and ccxpact coavex t a r g e t  set  G = [xJ”xIO < x0 < 8; x&; 
B > 01, kt E++( c I be E? m L R i m 1  time o D t i m a l  controller 

_ _  
- - 

steering s*(t) from 2- t o  G. Then @(t) is  extrerial,-that . 
I 

i s ,  there e x i s t s  a nonvanishing ad.foinG remonse  n ( t )  = 

= ( V O J q ( t ) )  w i t h  - < 0 SO that 

q(tjB(t)ukjtj = iviax [ q ( t j ~ j t ) u j  
U ER 

.^l.rnost always on [t,,t*] with {(t-*) an outward normal of 
L\-G.--) a t  xz(t*) on b K ( t - p )  an8 71(t*) s a t i s f i e s  the  t ransver -  
s a l i t y  condition, namely, ?(t*) is normal t o  a supporting 
liyperr>lane IT of G 2nd the  set  of a t t a inab i l i t y  k( t*)  which 
eeparates IZ(t+) from G.. 

nonmaxinal con t ro l l e r  G ( t ) C a  so t ha t  on Eo 
response xc ( t )  i n i t i a t i n g  a t  X = xc(Eo) i s  contained i n  G, 
then when u ( t )  i s  an adniss ible  extrernal con t ro l l e r  s t e e r i n g  
x t o  G by mezns of a response s a t i s f y i n g  the  t r a n s v e r s a l i t y  

.-- condition i t  i s  an optimum con t ro l l e r .  

Itoreover, if for each point [3] Z E G  there  e x i s t s  a ~ 

t < OJ the  

0 

- Proof By assumption there  e x i s t s  a con t ro l l e r  Steer ing co 
, . t o  G s o  G meets k(t*>. Suppose G meets the i n t e r i o r  of 

. .  
K ( t * ) .  This is  impossible because then G meets the i n t e r i o r  
of k ( t )  f o r  It-t*l < 6, 6 > 0, by theorem 3 and this contra- 
d i c t s  the op t fma l i ty  of the cont ro l le r .  Hence aG meets . 
aR(t*> s o  that  the optimum con t ro l l e r  must s t e e r  . t o  a % ( t * ) ,  
\!e must show thzt  it s t e e r s  t o  a lower boundary point’  to’con- 
elude t h a t  i t  is  extrernal. Tinis fol lows at once because 
K ( t )  alwsys first makes oontacc with G at a lower boundary 
A 



poin t  as can be seen by considering how the conpact s e t  
R ( t - )  w i t h  coavex lower surface moves with r e spec t  t o  the 
s e t  G. 

theorem 2 there  e x i s t s  the nonvanishirrg a d j o i n t  response 
<(t) s o  that  

I 
Thus i f  u"(t) i s  optimal it is extremal and by 

q ( t ) B ( t ) u X ( t )  = Yix q'( t )B(t)u 
- u€n t ^ .  - - 

4 

where < ( W )  s a t i s f i e s  the t r ansve r sa l i t y  condi t ion  s ince  G 
and the lower bowdary of  k( t*)  a r e  convex they can:*be 
separated by 2 supporting hyperplane TT and we' choose ';(t*). t o  
be normal t o  TT and d i rec ted  irk0 the  hzlfspace containing Q. 

then u ( t )  i s  an admissible extrema1 con t ro l l e r  steering e 

? t o  G and s a t i s f y i n g  the trznsversalitg condition I t  
nust be an optimum con t ro l l e r  if G has the property that - 

c -rough each poin t  %G there  passes a nonmaximal response 
which yemains forever  i n  G. This follows because once G and 
k ( t )  cone toge ther  the i n t e r i o r  of k(6) has a nonempty 
intersection with G so that the transversality oondition 
can only be s a t i s f i e d  once and therefore  there is on ly  one 
t ime, namely t*, f o r  which an extremal con t ro l l e r  can Steer 
t o  G and satisfy the t r ansve r sa l i t y  condition. Thus any such 
extremal con t ro l l e r  satisfying the t r a n s v e r s a l i t y  condi t ion 
i s  an optimum con t ro l l e r .  

Q.E.D. 

0 

2 -  

We have therefore  reduced the problem of f ind ing  an  
optimum con t ro l l e r  f o r  the approximation problem t o  that  of 
f ind ing  a so lu t ion  t o  the two point  !boundary 
as given by the  2n+2 equations: 

value problem 
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2 = ““(x) 
. .  

2 = A(t)x 3. B(b) Max [T(t)B(t)u) 
., . U€rI * .  

i = -+w - 11, ax aF’ ( x )  

. 
To = 0 

with boundary corxiitions ;(to) = Go, G ( t Y ) E  8 Q with q(t*) 
an interior normal to G at G(t*). 

3)  An Example of Approximate Bounded Phase Coordinate Tlne 

We shall consider a very simple example to’illustrate some 

of tie theory of the previous section. Consider a simple 

mechanism with position coordinate x and velocity coordinate 

y. 

means of a thrust force u(t) whose magnitude I s  bidirectional 

but limited to be less than 1 in magnitude and suppose the 

velocity is r,ot to exceed .6 in magnitude. 

the linear system 

, 

Suppose It is desired to bring the mechanlsrn t o  res t  by . 

That I s ,  consider 
. .  

Y x =  

f = u ( t )  ? 



- .-- . 
Q 

. I  . .  
0 -  

. .. 

1 1 
2 = +-(y + $2 f o r  y - < -2 

We shall later determine the Parameter $ > 0 

s t r i c t  bound on y i s  not exceeded. Problems 

so that the 

i n  which the , 

bou:-d is s o f t  are more easily handled since then w e  can . 

ger,emlly p ick  B ahead of tlme and in a straightforward manner 

solve the two poin t  boundary value problem. Here tie have 

picked F(x,y) s o  t ha t  we are constraining the response even 

%. uelcJl-e  .r8--..- t h e  bo-a&Liiy of i A  is 2.jiceedet ir"r hopes o r  raintam2.ri.g 

L :e s t r i c t  bound on y. 

I t  is nerely required that we find a solution of .the 

system: 

To solve th i s  approximate' problem 

- 0  
x = P(x,y) 

x 4 y 

1 

y ( t l )  = o f o r  some tl > 0. 
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A SLiZple ca l cu la t ion  shows tha t  picking 8 31 .08, 
1,(0) = -10, T1(0) = -1, q,(O) w -.55 provides a time 
optimal solutfon f o r  this problem. A plot of this  reapOn8e 
I s  given by figlule 1. Note i n  t h i s  problem the exac t  
op2iaun so lu t ion  was obtained, but  in general  one would Pick 
d i f f e r e n t  F(x,Y)~s t o  ge t  b e t t e r  approximations. 
4 )  Rmarks on the  approximate bounded phase coordinate problems 

with integral cos t  
A s  before  consider  the  l i n e a r  cont ro l  process 
x )  2 = A(t )x  + B ( t ) u ( t )  

s a t i s f y i n g  the condi t ions s t a t e d  a t  the beginning of SeOtiOn' 
1. A s  a cos t  func t lona l  of control  consider 

T 
C ( u )  = g(x(T))  -t f f f o ( x , t ]  + h o ( u , t ) ] d t  

to  

?;-me T = f ixed time > to and the r e a l  func t ions  f o ( x , t )  and 
ho ( u , t )  a r e  continuously d i f f e ren t i ab le  and f o ( x , t )  i s  a 
convex func t ion  of x f o r  each t. 

The problem of optimal oontrol i s  t o  piok an admissible 
c o n t r o l l e r  u ( t )  on [ to ,T]  so that the response \(t) of L 
inoves from xo t o  a t a r g e t  set zc Rn a t  T, (z may be whole 
space)  and rninimizes C ( u )  w i t h  the  e n t i r e  response Z(t) 

.- 

q . -  contained i s  the closed convex r e s t r a i n t  set A. 

F(x) s a t i s f y i n g  the conditions 
A s  before we introduce the convex d i f f e r e n t i a b l e  func t ion  

F(x) > 0 

The approximation problem is obtained by adding F(x) 
t o  the integrand of the cos t  funct ional  C(u) t o  o b t a l n ' a -  
new c o s t  functional 

l f  x f! A 
= O  i f ' x E A '  

e. r 

T 
c,(U) = g ( X ( T ) )  st { f o ( x J t )  i- s ( X )  h o ( U , t ) ] d t  

. .  0 4 

m 

U 
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a 

here  X - > 0. 
that the cont r ibu t ion  from the  term X F(x) can be small only 
if the response stays near A o r  withia it. 
problern is t o  f ind  t h a t  con t ro l l e r  u ( t )  which minimizes 
C,(u) 2nd s t e e r s  t o  zCRn. 

We shEll assume tha t  ho ( u , t )  is convex in u for each t 
o r  that the  con t ro l l e r  i s  bounded and h is a pos i t i ve  function 
of u i'o? each t o  In  e i t h e r  case the previous theory can be 
zps l ied  after slight modification by noting that  ? O ( x , t )  = 
= f o ( x , t )  + X F(x) is  a convex func t ion  of x f o r  each t'since 
bGth fo and F were c m v e x  funct ions 2nd by noting the con t r i -  
but ion t o  x o ( T )  inade by the te rns  h o ( u , t ) .  That is, the 
problem has xow been cast es o m  ?:k?ickr is covered by the 

If X is s u f f i c i e n t l y  lar2;e then one would expec$ 

The approximation 

I_  

si:fziclency r e s u l t s  02 reference 5 ?:hi& m e  also ~ ~ C ~ S S Z ~ S .  ' 

[ re ference  71 and can be obtained as a slight 
0- the results of s e c t i o x 2 .  . 

.3 

modlficatlon 

J 

. 

? 
I 

1 
' 4 

' . f 
- .. 

C'. 
I . ' '  
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